Group-Foraging with Particle Swarms and Genetic Programming
نویسندگان
چکیده
This paper has been inspired by two quite different works in the field of Particle Swarm theory. Its main aims are to obtain particle swarm equations via genetic programming which perform better than hand-designed ones on the group-foraging problem, and to provide insight into behavioural ecology. With this work, we want to start a new research direction: the use of genetic programming together with particle swarm algorithms in the simulation of problems in behavioural ecology.
منابع مشابه
Modelling Group-Foraging Behaviour with Particle Swarms
Abstract. Despite the many features that the behaviour of the standard particle swarm algorithm shares with grouping behaviour in animals (e.g. social attraction and communication between individuals), this biologically inspired technique has been mainly used in classical optimisation problems (i.e. finding the optimal value in a fitness landscape). We present here a novel application for parti...
متن کاملRelevance of Artificial Bee Colony Algorithm over Other Swarm Intelligence Algorithms
A new population-based search algorithm called the Bees Algorithm (BA) is presented in this paper. The algorithm mimics the food foraging behavior of swarms of honey bees. This algorithm performs a kind of neighborhood search combined with random search and can be used for both combinatorial optimization and functional optimization and with good numerical optimization results. ABC is a meta-heu...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملQuadratically constrained quadratic programming for classification using particle swarms and applications
Particle swarm optimization is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The approach of particle swarms is an example for interior point methods in optimization as an iterative technique. This approach is novel and deals with classification problems without the use of a traditi...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کامل